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Abstract In Evolutionary Multi-objective Optimization
(EMO), the mechanism of ε-dominance has received sig-
nificant attention because of its ability to guarantee conver-
gence near the Pareto frontier and maintain diversity among
solutions at a reasonable computational cost. A noticeable
weakness of this mechanism is its inability to vary the
resolution it provides of the Pareto frontier based on the
frontier’s tradeoff properties. We therefore propose a new
mechanism—L-dominance, based on the Lamé curve—as
an alternative to ε-dominance in EMO. The geometry of
the Lamé curve naturally supports a greater concentra-
tion of Pareto solutions in regions of significant tradeoff
between objectives. This variable resolution of solutions
allows an algorithm using L-dominance to generate fewer
solutions to describe the Pareto frontier as a whole while
maintaining a desired concentration of solutions where the
frontier requires greater detail. The L-dominance mecha-
nism is analyzed theoretically and by simulation on five
test problems, and is shown to result in increasingly signifi-
cant computational gains as the dimensionality of problems
increases.
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1 Introduction

Nearly all practical design problems include multiple objec-
tives. Often, these objectives are in conflict with each other.
In recent years, one of the most popular approaches for per-
forming numerical optimization under such conditions has
been Evolutionary Multi-objective Optimization (EMO).
EMO methods facilitate the simultaneous evolution of mul-
tiple potential solutions toward the Pareto frontier—the
region of the design space that represents all nondominated
solutions. An introduction to EMO methods and principles
can be found in Deb (2008) and Coello et al. (2007). The
goals of these methods are typically to (a) converge upon
the Pareto-optimal frontier, (b) maintain diversity among the
converged upon solutions, and (c) achieve the first two goals
at a reasonable computational cost (Deb et al. 2003).

To achieve these goals, various mechanisms have been
proposed, implemented, and analyzed. These mechanisms
are not standalone methods for performing multi-objective
optimization, but rather series of calculations that can be
incorporated into other complete optimization algorithms
in order to assist in accomplishing one or more of the
three aforementioned desirable goals. One category of such
optimization mechanisms is approximate domination mech-
anisms, which modify the traditional definition of domi-
nation in some way such that convergence, diversity, or
efficiency is improved.

The ε-dominance mechanism, first introduced by
Laumanns et al. (2002), has received a significant amount
of attention in the discipline in recent years because of its
ability to achieve all three of these goals when implemented
in conjunction with an EMO algorithm. When ε-dominance
is being used, the design space is divided into boxes with
dimensions equal to ε, hereafter referred to as ε-boxes.
No more than one solution is allowed per ε-box, and no
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solutions are allowed in any ε-box which is dominated by
another occupied ε-box. (The details of this mechanism
are further discussed in Section 2.2). Limiting the number
of solutions in each region ensures diversity, and conver-
gence is guaranteed once all of the boxes that contain the
Pareto frontier have been occupied. The calculations associ-
ated with this mechanism are computationally benign, and
so the third EMO goal is achievable as well. In multiple
studies, the ε-based versions of EMO algorithms have been
shown to outperform their non-ε counterparts in terms of
improved efficiency, distribution, and rate of convergence
(Kollat and Reed 2006; Hadka and Reed 2012; Kollat and
Reed 2005).

Despite these apparent strengths, one very significant
weakness of ε-dominance is its apathy concerning the
tradeoff properties of the Pareto frontier. Multiple studies
have shown that decision-makers tend to select solutions
from regions of the Pareto frontier where the tradeoff
ratio between two objectives is changing most quickly—
in other words, where the Pareto frontier “bulges” in some
direction (Bechikh et al. 2010; Das 1999; Branke et al.
2004). For example, three regions of significant tradeoff
have been identified in Fig. 1. These regions are often
described as knees of the Pareto frontier or compromise
regions. However, because these terms have been defined
many different ways in the literature (Schutze and Lau-
manns 2008; Das 1999; Rachmawati and Srinivasan 2009;
Deb 2003), to avoid ambiguity we will refer to these
regions simply as “regions of significant tradeoff.” For the
decision-maker to adequately understand the full range of
possibilities available to him or her, greater resolution (i.e.,
higher concentration of solutions, and therefore a smaller
ε-box size) is required in these regions so that the detailed
geometry of the Pareto frontier can be sufficiently rep-
resented. But by definition, ε-boxes are the same size
throughout the design space, and using this same maximum
resolution over the entire frontier can result in great com-
putational inefficiencies, particularly in high-dimensional
spaces.

In this paper, we propose the application of a new
mechanism that provides many of the benefits of ε-
dominance while also allowing for variable resolution of
the Pareto frontier in order to better capture its geom-
etry in regions of significant tradeoff. This mechanism
employs a shape known as a Lamé curve that was intro-
duced and utilized in another application of multi-objective
optimization in a previous publication by the authors
(Hancock and Mattson 2013). By preserving diversity
through the use of Lamé curves instead of ε-boxes, the
mechanism of L-dominance achieves the three primary
goals of EMO methods while naturally promoting greater
resolution of the Pareto frontier in regions of significant
tradeoff.

Significant Tradeoff

μ1

μ
2

Fig. 1 Three regions of significant tradeoff between objectives are
identified on a Pareto frontier in two dimensions

The remainder of this paper is organized as follows:
We begin in Section 2 by briefly reviewing the con-
cepts of ε-dominance and variable Pareto frontier res-
olution. In Section 3 we introduce the mechanism of
L-dominance, describe how it can be applied, and dis-
cuss its advantages and disadvantages. In Section 4
we compare the computational efficiency of using L-
dominance vs. ε-dominance. In Section 5 we discuss
the significance of the results and make suggestions for
future research. Finally, in Section 6 we offer concluding
remarks.

2 Technical preliminaries

This section reviews the theory, definition, and proposed
variations of ε-dominance, which serves as the founda-
tion for the L-dominance mechanism. In Section 2.1 we
define three categories of domination. In Section 2.2 we
provide the definition of ε-dominance as it was orig-
inally introduced. Then in Section 2.3 we briefly dis-
cuss three ε-dominance variations and one other mech-
anism that have already been proposed in the literature
as means of providing varied resolution of the Pareto
frontier.

2.1 Types of dominance

For the definitions in this section, let X, Y ∈ R
n, and

assume all objectives are to be minimized.

2.1.1 Strict dominance

Point X is said to strictly dominate point Y if X is strictly
better than Y in all n objectives:

∀i ∈ {1, ..., n} : Xi < Yi (1)
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2.1.2 Weak dominance

Point X is said to weakly dominate point Y if X is better
than or equal to Y in all n objectives, and strictly better in at
least 1 objective:

∀i ∈ {1, ..., n} : Xi ≤ Yi (2)

∃j ∈ {1, ..., n} : Xj < Yj (3)

2.1.3 Approximate dominance

Point X is said to approximately dominate point Y if Y

is located within the defined region of approximate equal-
ity surrounding X, and/or X weakly dominates Y . The
region of approximate equality is described by an ε-box for
ε-dominance, and a Lamé curve for L-dominance. These
shapes are defined in Section 2.2 and Section 3.1, respec-
tively. As a note, any shape used to define a region of
approximate equality must have the symmetric property
that if a solution A is located in the region of approxi-
mate equality for solution B, then solution B must also be
located in the region of approximate equality for solution
A. Consequently, each approximate domination mechanism
necessarily has a policy for selecting the more desirable
solution when two solutions would otherwise mutually
approximately dominate each other.

2.2 ε-dominance

When using ε-dominance, the user provides a value for ε

that represents the minimum amount of change in an objec-
tive that he or she considers to be significant. Then using
intervals of size ε, the design space is partitioned into a grid
of ε-boxes. Each solution is contained within one of these ε-
boxes, and the coordinates of that box become the values by
which weak-dominance is assessed. Consider, for example,
the design space presented in Fig. 2, wherein all objectives
are to be minimized and ε = 10. While solution C does
not weakly dominate solution B—not all Cartesian coordi-
nates of C (15, 12) are less than or equal to the Cartesian
coordinates of B (13, 27)—C does ε-dominate B, since the
ε-box coordinates of C (2, 2) do weakly dominate the ε-box
coordinates of B (2, 3). Thus, in this design space, only solu-
tions A, C, and E are ε-nondominated. When two solutions
are discovered in the same ε-box (such as solutions C and
D), the tie-breaker policy is that the one with the smaller
Euclidean distance to the optimal corner (the lower right
corner in Fig. 2) approximately dominates the other.

When using this approach, anchor point solutions near
the ends of the Pareto frontier (such as solution G in Fig. 2)
are often approximately dominated and removed. In most
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Fig. 2 In this design space where ε = 10, solution C does not weakly
dominate solution B, but does ε-dominate it. In this design space, only
solutions A, C, E are ε-nondominated

situations, however, it is desirable to include these solu-
tions in the final set so that the full shape of the Pareto
frontier is represented, (even though resolution may vary
throughout the frontier). To achieve this end, a variant on
traditional ε-domination may be used wherein strict dom-
inance of ε-boxes is required instead of weak dominance
when removing other solutions. Under these conditions,
solutions A, B, C, E, and G would be ε-nondominated. In
the remainder of this paper, all references to ε-dominance
may be understood to refer to the strict dominance version
of the mechanism.

Once again, ε-dominance is referred to as a mecha-
nism rather than a method because the mere existence
of ε-boxes is not sufficient to generate a Pareto frontier.
Rather, calculations of ε-dominance are used within exist-
ing EMO methods when determining which solutions to
archive or remove from generation to generation. This flex-
ibility has allowed ε-dominance to be incorporated into a
wide variety of methods. A few of these include ε-MOEA
(Deb et al. 2003), ε-NSGA-II (Kollat and Reed 2005), ε-
MyDE (Santana-Quintero and Coello 2005), and Adaptive-
ε Box (Kowatari et al. 2012).

2.3 ε-dominance variations

As was mentioned in Section 1, a recognized weakness of
ε-dominance is its inability to adjust the resolution of gener-
ated solutions within the design space. It maintains diversity
equally in all regions of the Pareto frontier, regardless
of where signficant tradeoff is or isn’t occurring. Conse-
quently, a number of ε-dominance variations have been
proposed in the years since its inception.

The original creators of ε-dominance recommended
using a different value of εi for each objective i in the design
space. This potentially changes the ε-boxes from squares to
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rectangles, but still clearly lacks the ability to increase the
resolution of solutions only where it is needed.

Jin and Wong (2003) proposed using a grid of dynami-
cally adjusted ε-boxes (see Fig. 3a). This approach, called
Adaptive Rectangle Archiving (ARA), allows for the grid
lines that define ε-boxes to move along the objective axes in
order to adjust the density of solutions in the design space.
However, according to Laumanns et al. (2002), the origi-
nal creators of ε-dominance, “for ensuring the convergence
property it is important not to move or translate any of the
box limits; in other words, the assignment of the elements
to the boxes must stay the same.” Thus, the improvement in
solution density that can come from allowing the limits of ε-
boxes to shift during the course of the optimization comes at
the cost of one of the three primary objectives of EMOs—a
guarantee of convergence.

Five years after the introduction of ε-dominance,
Hernández-Dı́az et al. (2007) introduced the concept of
Pareto-adaptive ε-dominance, wherein an approximation
of the Pareto frontier is obtained and associated with an
equation of the form:

x
p

1 + x
p

2 + ... + x
p
n = 1 : 0 < p < ∞ (4)

The calculated value for p is then used along with user-
provided values for the desired number of solutions and
the “speed of variation” to compute values of εi that vary
throughout the space according to a geometric sequence.
This approach results in smaller ε-boxes where a single
region of significant tradeoff of the Pareto frontier is pro-
jected to be (see Fig. 3b). However, this method requires
prior knowledge of the shape of the Pareto frontier (i.e.,
function calls spent on creating an approximation), assumes
a symmetric geometry, and cannot be adjusted to identify
multiple regions of significant tradeoff.

In addition to these ε-dominance variations created for
obtaining variable Pareto frontier resolution, the use of a
post-processing mechanism called a smart Pareto filter was

proposed by Mattson et al. (2004). This mechanism steps
through a densely populated set of Pareto solutions and sys-
tematically removes all solutions that lie in the Practically
Insignifcant Tradeoff (PIT) region of an already accepted
solution. The dimensions of the PIT region are chosen by the
user specifically for the problem at hand. After the filter has
been applied, the remaining set of solutions has the desirable
property of having greater resoultion in regions of signifi-
cant tradeoff and is called a smart Pareto set. Nevertheless,
this mechanism can only be applied after all candidate solu-
tions have been found, and it requires a method capable
of first generating a high concentration of solutions in all
desired regions of the Pareto frontier.

Clearly, the ability of a method or mechanism to identify
and exploit regions of significant tradeoff is very desirable
within the discipline. In the remainder of this paper, we
introduce and analyze the L-dominance mechanism, which
has this ability while maintaining many of the properties
that have made ε-dominance a frequently used mechanism
within evolutionary multi-objective optimization.

3 The L-dominance mechanism

In this section, we first introduce the mathematical def-
inition of the Lamé curve, then demonstrate how it can
be used to enable L-dominance calculations, and finally
discuss the advantages and disadvantages of L-dominance
compared to ε-dominance. The fundamental concept behind
L-dominance is the replacement of ε-boxes with a shape
that naturally lends itself to a greater concentration of solu-
tions in regions of significant tradeoff. This occurs due to
the geometry of the Lamé curve, which has the smallest
thickness in directions of high tradeoff (e.g., 45◦ in a uni-
formly scaled space), and the largest thickness in directions
of low tradeoff (e.g., the vertical and horizontal directions)
over the specified domain of p = [0, 2]. Using Lamé curves
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Fig. 3 Pareto sets resulting from (a) Adaptive Rectangle Archiving
with dynamically adjusted ε-boxes, (b) Pareto-adaptive ε-dominance
with varied ε-box sizes based on an approximation of the Pareto

frontier, and (c) the use of a smart Pareto filter, which removes all
solutions (empty circles) that lie in the PIT region (shaded gray) of an
accepted solution (filled circles)



L-dominance: An approximate-domination mechanism for adaptive resolution 273

to define approximate dominance rather than ε-boxes, diver-
sity and convergence are still guaranteed, but exploitation of
regions of significant tradeoff is also enabled.

3.1 The mathematical definition of the Lamé curve

The Lamé curve (also sometimes called a superellipse) is
defined by the equation

(
n∑

i=1

|Ai,i(xi − di)|p
) 1

p

= 1 (n ≥ 2) (5)

where

A =

⎡
⎢⎢⎣

1
a1

. . . 0
...

. . .
...

0 . . . 1
an

⎤
⎥⎥⎦ (6)

and d is a vector from the origin to the center point of
the Lamé curve. Algebraically, this represents the p-norm
(Rynne 2007) of x, offset by d (based on its location in
the design space), multiplied by a transformation matrix
A (for scaling purposes), and set equal to 1. When used
as an EMO mechanism, the user-defined variables ai and
p of the Lamé curve allow the user to determine the dis-
tribution of the Pareto solutions that will be generated for
that particular problem. Each value ai (sometimes called the
semi-diameter of a Lamé curve) corresponds to objective
i in the problem and may be interpreted as the amount of
change in that objective that would constitute a significant
difference between two solutions in the user’s mind if all
other objectives remain practically unchanged (see Fig. 4).
Accordingly, larger values for ai will result in larger approx-
imate domination boundaries, and therefore fewer solutions
in the final Pareto set.

The parameter p affects the curvature of the approx-
imate domination boundaries and therefore controls the
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Fig. 4 The Lamé curves for a design space in a design space with (a)
2 objectives and (b) 3 objectives

extent to which significant tradeoff between objectives is
required in order for two solution nearby each other to both
remain in the Pareto set. The effect of p on the shape of
the approximately dominated region is illustrated in Fig. 5.
While the method will work for any value of p between
0 and 2, it is assumed that for most purposes, the user
will select a value between 0 and 1. At p = 0, the area
of the approximately dominated region approaches 0. At
p = 2, the Lamé curve becomes an ellipse (or higher
dimensional version of an ellipse), resulting in an approxi-
mately even distribution of solutions over the entire Pareto
frontier.

The computational cost of generating a Lamé curve or
of identifying whether a solution lies within or without
it is constant. However, as is made evident by Fig. 5,
smaller values of p will result in smaller approximately
dominated regions (just as smaller values of ε result in
smaller ε-boxes). Smaller approximately dominated regions
with either mechanism will result in more solutions being
found on the Pareto frontier, and consequently more func-
tion calls being made overall in the optimization routine.
Thus, as would be expected, the choice of values for
the user-defined parameters in either ε-dominance or L-
dominance will affect the overall quantity of solutions in
the final set and therefore the total computational cost
of the routine. However, while lowering the value of p

will require greater computational cost overall, it will also
result in a lower computational cost than what would be
required if the same resolution were being sought with
ε-boxes. This result is discussed further in Sections 4
and 5.

Fig. 5 The effect of the user-defined parameter p on the shape of the
approximately dominated region bounded by a Lamé curve
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3.2 How to apply the L-dominance mechanism

Calculations for L-dominance occur in the same place
where any ε-dominance calculations occur within an ε-
based method, and the output for either mechanism is
the same—a Boolean value that indicates whether a can-
didate solution is approximately dominated or not, and
should therefore be added to an archive, replace an exist-
ing solution, or be dropped, depending on the mode of
operation of the algorithm. This means that L-dominance
can easily be incorporated into the wide variety of meth-
ods that currently utilize an approximate domination
mechanism.

As described in the definition of approximate dominance
given in Section 2.1, a new solution is L-dominated if it is
either located within the Lamé curve of an existing Pareto
solution or weakly dominated. Like ε-boxes, Lamé curves
remain stationary in the design space once they are created,
thereby preserving a guarantee of convergence (since deteri-
oration of the set of Pareto solutions is not allowed to occur).
Unlike ε-boxes, however, Lamé curves have no other coor-
dinates in the space besides the Cartesian coordinates of
the center point. Thus, domination is evaluated using Carte-
sian coordinates rather than ε-box coordinates. In situations
where two solutions lie within each other’s approximately
dominated region and neither weakly dominates the other,
the tie-breaker policy for L-dominance is to simply accept
the solution that was discovered first.

3.3 Comparison of L-dominance and ε-dominance

The L-dominance and ε-dominance mechanisms have much
in common in the way that they satisfy the three objec-
tives of EMO. First, both guarantee convergence near the
Pareto frontier. According to Laumanns et al. (2002), in
EMO methods with archiving strategies, convergence is
assured if deterioration of the archive cannot occur. Dete-
rioration occurs when elements of the current archive are
dominated by solutions that were in the archive at some
previous time. Because the bounds of approximately dom-
inated regions remain fixed for both mechanisms and no
new solutions may be added to the archive unless they are
nondominated by the current archive, convergence is con-
sequently guaranteed. Once the Pareto frontier is entirely
contained within either Lamé curves or ε-boxes, no new
solutions may be added. This stagnation of the Pareto set
that corresponds with no new solutions being found can eas-
ily be used as a termination condition for an optimization
algorithm. For further discussion of convergence properties
of EMO algorithms, see Rudolph and Agapie (2000).

Second, both mechanisms guarantee diversity—based on
the user-defined values for ai and p (for L-dominance) or
εi (for ε-dominance), a certain minimum spacing between

nearby solutions is required for all to remain in the Pareto
set.

And third, the calculations for both mechanisms are com-
putationally benign. Because the Lamé is describable with a
single equation, the determination of whether or not a new
solution resides in an existing Lamé curve is a very simple
check to perform.

Aside from satisfying these three objectives of EMOs, L-
dominance provides a number of additional benefits beyond
ε-dominance and its proposed variations. As has already
been mentioned, L-dominance allows a greater concentra-
tion of solutions to occur in significant tradeoff regions
of the Pareto frontier. And, as will be shown in Section
4, the benefits of this property in terms of computational
gains grow significantly as the number of dimensions in the
problem increases. There is no limit to how many of these
significant tradeoff regions can be exploited (since variable
resolution comes naturally as a result of the shape of the
Lamé curve), and the mechanism requires no prior informa-
tion about the shape of the Pareto frontier to work. Unlike ε-
dominance, where adjacent solutions can be located imme-
diately on either side of the line between ε-boxes, there is a
minimum distance that adjacent solutions are guaranteed to
have between them in L-dominance. Finally, because weak
domination is checked using Cartesian coordinates rather
than ε-box coordinates, anchor point solutions—which gen-
erally occur where at least one coordinate is changing
very slowly—are more likely to be discovered when using
L-dominance.

There are also some potential disadvantages that come
from using L-dominance instead of ε-dominance. While
L-dominance provides the user with more flexibility by
allowing him or her to specify the curvature of the Lamé
curve, the proper selection of this parameter is less immedi-
ately intuitive than the selection of the lengths of an ε-box.
This may be viewed as either an additional cognitive burden
being placed on the user or as an opportunity for the user to
include more of his or her experience and knowledge of the
problem in the optimization formulation. If variable resolu-
tion is desired, then any value for p in the allowable range
will produce a shape more naturally inclined to promote this
goal than an ε-box, since the direction of significant trade-
off is now the thinnest part of the approximately dominated
region instead of the thickest. And if the user would rather
not have variable resolution or not have to make a decision
on what value of p to use, then setting p = 2 will yield
Lamé curves in the shape of a circle (or its higher dimen-
sional corollary), which will yield an equal distribution of
solutions just as ε-dominance would.

The other potential disadvantage of L-dominance is that
when two solutions are discovered in the same ε-box, the
tie-breaker method may be employed to select the more pre-
ferred of the two, since the location of the ε-box remains
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Fig. 6 The average distance between solutions in regions of high
tradeoff is shown to range between [0.5, 1] diagonal lengths for Lamé
curves, and between [0, 2] diagonal lengths for ε-boxes

unchanged either way. Because Lamé curves are centered on
individual solutions as they appear rather than being defined
at the beginning of the optimization like ε-boxes, the first
solution in a given Lamé curve must be the winner of all
“ties” between two solutions within the same curve that do
not weakly dominate each other, since the boundaries of an
approximate equality region must remain fixed to guarantee
convergence.

4 Simulations

4.1 Simulation setup

One way to assess the benefits of using L-dominance instead
of ε-dominance is to compare the resulting Pareto sets when
these two mechanisms are utilized within the same EMO
algorithm, on the same problem, and with similar settings.
For each of the simulation problems, we first performed
an optimization using L-dominance. Given the shape of the
Lamé curves used, we were able to calculate the average dis-
tance between solutions in a region of significant tradeoff.
As shown in Fig. 6, adjacent solutions in a converged Pareto
frontier can vary between 0.5 and 1 times the “diagonal” of
a Lamé curve. Given the symmetry of the Lamé curve, this
yields an average distance of 0.75 times the diagonal (Knuth
1986), yielding the equation:

d̄L = (0.75)(2)(n
− 1

p )

√√√√ n∑
i=1

a2
i (7)

When using ε-boxes, on the other hand, adjacent solu-
tions can vary between approximately 0 and 2 times the
diagonal of an ε-box. This results in an average distance of:

d̄ε = √
n(ε) (8)

where n is the number of dimensions in the problem. Set-
ting the two average distances between solutions equal to
each other, we then solved for ε and used that value to
perform an optimization with ε-dominance. Thus, although
the stochastic nature of evolutionary algorithms resulted in
slightly different resolution in the Pareto frontier with each

execution, the average distance between solutions in regions
of high tradeoff was the same for both mechanisms. By
observing differences in the required number of function
calls to achieve the same average resolution, the computa-
tional benefits of using L-dominance vs. ε-dominance can
be quantified.

For the simulations described in this paper, the approx-
imate domination mechanisms were used within the ε-
MOEA algorithm developed by Deb et al. (2003). This
algorithm was chosen both for its relatively simple structure
and because it was one of the first to utilize ε-dominance
and is consequently well-known in the field. Because the
focus of this paper is on the approximate domination mech-
anisms rather than the optimization algorithms within which
they are used, we refer those interested in the details of
the ε-MOEA algorithm to Appendix A or the original
publication.

A sample simulation is represented graphically in Fig. 7,
which shows an illustration of the Pareto frontier of a sim-
ple two-dimensional design space with boundaries in the
shape of a circle. First, L-dominance is used to generate a
Pareto set such as the one shown in Fig. 7a. The average
distance between solutions in the region with maximum sig-
nificant tradeoff is recorded as d̄ , as indicated. Then, using
the formulas given above, the necessary value for ε is cal-
culated and used to generate a Pareto set with the same d̄

using ε-dominance, as shown in Fig. 7b. As indicated by the
plots, the average distance between solutions in the region
of interest is nearly identical. However, while the Pareto set
generated by L-dominance is able to reduce resolution in the
relatively flat regions of the Pareto frontier (as seen from the
increasing magnitude of d̄ in the upper left and lower right
corners of Fig. 7a), ε-dominance experiences approximately
uniform distribution everywhere.

4.2 Problem descriptions and tabulated results

The three multi-objective problems that were used to
compare ε-dominance to L-dominance are summarized in
Table 1. Each problem was solved in two, three, and four
dimensions. Between these three problems, Pareto fron-
tiers that are convex, concave, and disjoint are all rep-
resented. The problem identified as Circle represents an
n-dimensional design space bounded by a circle (or its
higher dimensional corollary, such as a sphere or hyper-
sphere), which is centered on the point that has all units set
equal to 1 (such as (1,1) in two dimensions). The DTLZ2
and DTLZ7 problems were introduced by Deb et al. (2002)
as scalable test problems for benchmarking MOEAs. The
DTLZ2 has a concave Pareto frontier, and DTLZ7 has 2M−1

disjoint regions that collectively make up its Pareto fron-
tier. Both problems are described in greater detail in the
aforementioned paper.
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Fig. 7 An illustration of Pareto
sets that could be generated by
(a) L-dominance and (b)
ε-dominance using parameter
values designed to yield the
same average resolution d̄ in the
region of maximum significant
tradeoff on the Pareto frontier of
the Circle problem in 2D
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The simulation results are summarized in Table 2. The
first section gives the values for the arbitrary user-defined
parameter ai for L-dominance and the corresponding value
of ε that would result in the same average resolution in high
tradeoff regions. A value of p = 0.5 was used for all L-
dominance simulations. The second section reports the total
number of solutions generated to reach convergence, and the
final section reports the total number of function calls per-
formed for each mechanism. All reported quantities of solu-
tions and function calls are the average of 25 simulations.
Because we are primarily interested in observing general
trends, this level of precision was sufficient for this study.

5 Discussion of simulation results

The most significant trend to recognize from the simu-
lation results is shown in bold in Table 2, and that is

that as the number of dimensions increases, so does the
reduction in the number of function calls required to reach
convergence for L-dominance compared to ε-dominance.
This is to be expected, since the number of ε-boxes
in a design space grows exponentially as dimensionality
increases. In four dimensions, the ratio of function calls per-
formed is as low as 16 %, and engineering problems with
many more than four objectives are not uncommon.

We note that the ratio of the number of solutions for each
mechanism is not directly proportional to the ratio of the
number of function calls required. This suggests that the
cost (in function calls) of producing a single solution can
vary by problem due to the geometry of the Pareto fron-
tier and how that geometry interfaces with the shape of
approximate domination that is being utilized. For exam-
ple, unlike ε-dominance, which has predefined regions of
approximate equality, L-dominance creates its regions of
approximate equality as new solutions are found. This can

Table 1 This table provides
the governing equations for the
three test problems that were
used to conduct simulations

Name Problem Geometry

Circle fm=1:M = xm Convex

subject to h(x) ≥ 0

where h(x) = ∑M
i=1(xi − 1)2

DTLZ2 f1 = (1 + g)
∏M−1

i=1 cos(xiπ/2) Concave

fm=2:M−1 = (1 + g)
(∏M−m

i=1 cos(xiπ/2)
)

sin(xM−m+1π/2)

fM = (1 + g) sin(xiπ/2)

g = ∑
xi∈xM

(xi − 0.5)2

DTLZ7 fm=1:M−1 = xm Disjoint

fM = (1 + g)
(
M − ∑M−1

i=1

[
fi

1+g
(1 + sin(3πfi))

])
g = 1 + 9

|xM |
∑

xi∈xM
xi

Each problem is scalable to any number of dimensions, represented here as M . The bounds on all
independent variables are [0, 1]
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Table 2 This table compares
the number of solutions and
function calls required to reach
convergence for each
mechanism on each of three test
problems in 2D, 3D, and 4D

2D 3D 4D

Circle DTLZ2 DTLZ7 Circle DTLZ2 DTLZ7 Circle DTLZ2 DTLZ7

Parameters

ai 0.25 0.5 0.5 1 1.5 1.5 2 4 4

εi 0.094 0.188 0.188 0.167 0.250 0.250 0.188 0.375 0.375

d̄ 0.133 0.266 0.266 0.289 0.433 0.433 0.375 0.750 0.750

# Solutions

L-dominance 9 8 6 15 17 13 22 18 8

ε-dominance 15 14 9 63 49 21 278 177 15

# Function Calls

L-dominance 670 408 801 552 1,143 818 593 430 584

ε-dominance 1,006 711 1,572 1,282 2,955 2,272 3,471 2,738 3,554

Ratio 0.67 0.57 0.51 0.43 0.39 0.36 0.17 0.16 0.16

User-defined parameters were set such that both mechanisms produce Pareto sets with the same average
resolution in regions of high tradeoff. Of particular interest is the decreasing ratio of the number of function
calls for L-dominance compared to ε-dominance as dimensionality increases

result in numerous small regions between proximate Lamé
curves where new solutions can be discovered, thereby
providing more frequent opportunities for new members
to be recognized as approximately nondominated even if
the amount of progress toward the true Pareto frontier is
the same for both mechanisms. Consequently, if the con-
vergence criterion for an algorithm is simply based on
the rate of change in the archive of nondominated solu-
tions, this may effect a difference in the perceived rate of
progress between the two mechanisms, and therefore the
time required for convergence. The convergence criterion
used for these simulations was, indeed, simply a maximum
allowable number of function calls (300) without the dis-
covery of a new Pareto solution. We therefore hypothesize
that the use of more sophisticated convergence criteria could
result in even greater gains for L-dominance than what is
already shown in Table 2.

While not reflected in Table 2, where p = 0.5 for all
L-dominance simulations, we also noticed that generally, as
p decreased (resulting in “skinnier” Lamé curves), the rel-
ative advantage of L-dominance over ε-dominance in terms
of function calls increased. This was true only up to some
minimum bound (usually between 0.25 and 0.33) where
reductions in cost leveled out. We hypothesize once again
that this may be the result of the design space becom-
ing more “fragmented” as tighter Lamé curves are used,
causing a greater cost per Pareto solution due to more fre-
quent resetting of the stagnancy counter that corresponds to
the convergence criterion. We suggest investigation of this
phenomenon as additional future work.

Differences in performance between L-dominance and ε-
dominance depend to some extent on the algorithm within
which they are used (e.g. ε-MOEA, ε-NSGAII, etc.), as well

as the setup and parameters of the optimization (e.g., con-
vergence criteria, constraint handling, mutation rate, etc.).
These factors will obviously affect the rate of convergence
as well as the average number of function calls per solu-
tion. In these simulations, because the focus was simply
to compare two mechanisms under standard operating con-
ditions, very little was done to optimize the overarching
algorithm that applied the approximate domination mecha-
nisms (in this case, ε-MOEA). As with most optimization
tasks, for best results, the user will identify the algorithm
and optimization parameters most suitable for the given
problem. Thus, while results will vary for each setup and
problem to which these mechanisms are applied, based on
the theory laid out in this paper we would expect the gen-
eral trends found by our simulations and shown in Table 2
to hold.

Finally, we propose future work with connections to
a number of developments in EMO that have been pub-
lished in recent years. Emmerich (2007) have proposed
a gradient-based/evolutionary hybrid method, which
attempts to maximize the hypervolume being dominated
by a set of solutions. While that method does not utilize
approximate domination calculations, it is feasible
that the measure of dominated hypervolume could be
adjusted/weighted to reflect its position in the design
space relative to tradeoff properties. Similarly, Zhang and
Li (2007) and Giagkiozis et al. (2013) have proposed
decomposition methods, which divide the multi-objective
optimization problem into a set of neighboring subprob-
lems. While both were presented with the assumption that
a uniform distribution is desired, the definition of a well-
distributed Pareto set could also be modified to reflect the
desirability of a variable resolution on the Pareto frontier,
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using the equation of the Lamé curve as a guide for where
greater resolution is required.

6 Conclusion

The mechanism of ε-dominance provides many benefits
in EMO, including guaranteed convergence and diversity
preservation at a reasonable computational cost. However,
without the ability to adjust the resolution of the Pareto
frontier according to its tradeoff properties, the meth-
ods employing ε-dominance often experience unnecessary
inefficiencies. In this paper, we introduced a new mecha-
nism, L-dominance, which maintains the positive qualities
of ε-dominance while naturally increasing the concentra-
tion of solutions in regions of significant tradeoff. This is
accomplished primarily through the use of Lamé curves
instead of ε-boxes as the region of approximate equal-
ity for an approximate domination mechanism. The value
of the proposed mechanism has been shown theoretically
and by simulation results. In particular, increasingly sig-
nificant reductions in computational cost were seen as the
dimensionality of the problems increased. Based on these
results, we confidently recommend the use of L-dominance
in place of ε-dominance as a diversity/convergence mech-
anism where variable resolution is desired, especially in
high-dimensional EMO problems.
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Appendix A: The ε-MOEA Algorithm

The ε-MOEA algorithm was first introduced by Deb
et al. (2003). In this algorithm, as with many EMO algo-
rithms, there are two groups of solutions being main-
tained: the general population P(t) and the archive pop-
ulation A(t), where t indicates the generation number.
An initial population (often randomly generated) fills
P(0), and the ε-nondominated solutions from the pop-
ulation become the initial archive population A(0). One
member from each population is then chosen for mat-
ing. The solution from A(t), called a, is chosen at ran-
dom. To choose a solution from P(t), called p, two ran-
domly selected solutions are checked for dominance. If
one dominates the other, then that solution is chosen; oth-
erwise, the choice between the two is random. Solutions
a and p are then mated to create λ offspring solutions.
In this paper and the original ε-MOEA paper, λ = 1.
These offspring candidate solutions, called ci for i =
1...λ, are then compared to both populations for possible
inclusion.

For inclusion in the general population, a standard
dominance check is performed between ci and the cur-
rent general population. If ci is dominated by any
member of P(t), then it is not accepted. If ci domi-
nates ones or more members, then it replaces one of
them at random. If ci is non-dominated with respect
to P(t), then it replaces a population member cho-
sen at random. In all cases, the size of P(t) remains
constant.

For inclusion in the archive population, an ε-dominance
check is performed between ci and the current archive pop-
ulation A(t). If ci is ε-dominated by any member of A(t),
then it is not accepted. If ci ε-dominates one or more mem-
bers, then it replaces one of them at random. So far, this
is nearly identical to the inclusion process for the gen-
eral population. In the case that ci is ε-nondominated with
respect to A(t), however, one of two actions may be taken.
If ci occupies a previously unoccupied ε-box, it is accepted
into the archive. If ci occupies an ε-box that is currently
occupied by an archive solution, then a tie breaker is per-
formed to determine which will remain and which will be
removed. If one dominates the other in the usual sense,
the nondominated solution remains. If the two solutions are
nondominated with respect to each other, then the accepted
solution is the one that has the smaller Euclidean dis-
tance to the corner of the ε-box that is in the preferred
direction for all objectives (e.g., the bottom left corner in
a two-dimensional space where both objectives are being
minimized).

This procedure is repeated for a specified number of gen-
erations and the final archive population is returned as the
Pareto set of solutions. As described above, this algorithm
is a steady-state, elitist MOEA. The size of P(t) is constant
through all generations, and while A(t) has the potential to
grow in size over the course of the algorithm, its size is
also bounded by the fact that the Pareto frontier must pass
through a finite number of ε-boxes, and each of these may
contain only a single archive member. Furthermore, because
no solution can be removed from the archive until a solution
that either dominates it or ε-dominates it has been added in
its place, deterioration of the Pareto set is prevented at all
times.
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